Indian Statistical Institute, Bangalore

M.Math II Year, Second Semester Semestral Examination Advanced Functional Analysis May 02, 2011 Instructo

Time: 3 hours

Instructor: T.S.S.R.K.Rao Total Score : $10 \times 6 = 60$

Answer all questions. Show all work.

- 1. Consider \mathbb{R}^n , equipped with the norms, $\| (x_1 \cdots x_n) \|_1 = \sum_{i=1}^n |x_i|$ and $\| (x_1, \cdots, x_n) \|_{\infty} = \max_{1 \le i \le n} |x_i|$. Let $T : (\mathbb{R}^n, \|\|_1) \longrightarrow (\mathbb{R}^n, \|\|_{\infty})$ be a linear map that in also one one. Show that T is an isomorphism.
- 2. Let X, Y, Z be completely metrizable TVS. Suppose $B : X \times Y \to Z$ is bilinear and separately continuous. Show that B is continuous.
- 3. Let X be a locally convex topological vector space. Let V be a closed, convex, balanced nbhd of zero. Show that: ${}^{0}(V^{0}) = V$.
- 4. Let $l^1 = \{\{\alpha_n\}_{n \ge 1} : \sum |\alpha_n| < \infty\}$, equipped with the usual norm. Let $A \subset l^1$ be bounded in the weak topology. Show that A is bounded in the norm topology.
- 5. Let K be a compact convex set in a LCTVS, X. Suppose K has only finitely many extreme points. Show that K is the convex hull of the set of extreme points.
- 6. Let $f : [0,1] \to \mathbb{R}^+$ be a continuous, affine function (i.e., $f(\lambda t + (1 \lambda)s) = \lambda f(t) + (1 \lambda)f(s)$ for $\lambda, s, t \in [0,1]$). Show that $\sup_{[0,1]} f = f(0)$ or f(1).
- 7. Let K be compact convex set in a LCTVS X. Let $a : K \to \mathbb{R}$ be an affine continuous function. Suppose a = 0 at all extreme points of K. Show that $a \equiv 0$.
- 8. Let (l, σ, m) be a finite measure space. Let X be a Banach space. Let $f, g : l \to X$ be strongly m- measurable. Suppose $\forall x^* \varepsilon X^*, x^* \circ f = x^* \circ g \ a \cdot e$. Show that $f = g \ a \cdot e$.
- 9. Let (l, σ, m) be a probability space. Let X be a Banach space. Let $f : l \to X$ be a Bochner integrable function. Let $\{E_n\}_{n\geq 1} \subset \sigma$ be a pair-wise disjoint sequence. Show that $\int_{UE_n} fdm = \sum_{E_n} \int_{E_n} fdm$.

P.T.O

10. Let Σ be the Borel σ - field on [0, 1] and λ , be the Lebesgue measure. Consider \mathbb{R}^n equipped with the maximum norm. Let $f : [0, 1] \to \mathbb{R}^n$ be such that for each coordinate functional $e_i, e_i \circ f \in L^1(\lambda)$. Show that f is Bochner integrable.